Workshop on Simulation and Characterization of Statistical CMOS Variability and Reliability

9. September, 2010, Bologna

Compact Modeling of the MOSFET Performance Distribution for Statistical Circuit Simulation

M. Miura-Mattausch Hiroshima University

About Compact Models

Device Characteristics \iff Compact Model \iff Circuit Simulation

- Analytical Equations
- Parameter Extraction

Variation of Circuit Performances

- Single Transistor Variations
- Layout Dependent Variations
- Interconnect Variations

Goal of Compact Models

predict statistical variation of circuit performances without statistical investigations

Contents

1. Compact MOSFET Modeling: HiSIM

2. Variation Extraction

- DC measurements (inter-chip variation)
- basic analog circuits (intra-chip variation)

3. Methodology Incorporating Circuit Simulation

Basic Device Equations

-Quantum Mechanical Effect

-Ballistic Effect

Surface-Potential-Based Model

- Based on the Poisson equation
- No fitting parameter for subthreshold region
- Reflect device-parameter (Nsub, Tox etc.) dependence

Pocket Implantation

6

Universal Mobility

Model Ability: 45nm Technology

Harmonic Distortions: Model-Ability Check

Comparison with Mobility

Mobility determines the harmonic distortion characteristics.

D. Navarro et al., Proc. SISPAD, p. 259, 2004.

Characteristics Important for RF Applications

- > Integrating *n*, μ along the channel derives analytical descriptions.
- > No additional model parameters are required.
- > Features are determined only by *I-V* characteristics.

Surface-potential distribution along the channel is the key.

M. Miura-Mattaush, SISPAD 2005.

2. Variation Extraction

- DC measurements (inter-chip variation)
- basic analog circuits (intra-chip variation)

Extraction for Nominal Chip

predictability of N_{sub} variation

Prediction of N_{sub} Variation: g_m

Prediction of N_{sub} Variation: g_{ds}

Sensitivity Analysis of Model Parameters

Number of model parameters for capturing the $V_{\rm th}$ and $I_{\rm on}$ variation is limited.

Parameter Extraction for Inter-Chip Variation

Tox: oxide thickness ← usually small NSUBC: substrate impurity concentration NSUBP: pocket impurity concentration XLD: overlap length MUESR1: surface-roughness scattering

Extraction Method for Microscopic Variations

Step	Device	Parameter	Direction
1	Long	NSUBC	1
2		MUESR1	2
3	Short	NSUBP	3
4		XLD	4

With 4 parameters 16 (2⁴) combinations of variation boundaries are possible.

Variations in Different Generations

Parameter Extraction for Intra-Chip Variation

- Cascode-Current Source
- Differential-Amplifier-Stage with Feed-back Coupling

Cascode-Current Source

D. Miyawaki et al., APS-DAC, p. 39, 2001.

Origin of *I*_{out} **Variation**

Extraction of Intra-Chip Variation

Extraction Results

Differential-Amplifier-Stage with Feed-back Coupling

Function: to amplify Vin to Vout

S. Matsumoto et al., CICC, p. 357, 2001.

4 devices same variations \rightarrow inter; 4 devices different variations \rightarrow intra

Obtained Results

Cascode-Current Source

	ΔN_{sub}	ΔL_{gate} /0.6 μ m
Inter	7%	6.7%
Intra	1%	3.8%

Differential-Amplifier-Stage with Feed-Back-Coupling

	ΔN_{sub}	∆L _{gate} /0.6μm
Inter	5.9%	6.2%
Intra	2.3%	3.2%

3. Methodology Incorporating Circuit Simulation

Approach

Number of responsible model parameters for variation are small.

- For variation combinations, Monte Carlo simulation
- For circuit-performance simulation
 - 1. analytical description
 - 2. SPICE simulation
- For intra-chip variation
 - 1. Monte Carlo simulation
 - 2. consider two boundaries (best, worst)

Distribution of Circuit Performances (Monte Carlo Simulation with 10000 Samples)

Monte Carlo simulation for both inter/intra-chip variations Lines: SPICE simulation with HiSIM2

(inter: Monte Carlo; intra: best+worst assume random variation)

Summary

- Compact modeling based on surface-potential description provides accurate and fast statistical simulation.
- ✓ Accurate parameter extraction is the key for accurate prediction of circuit performance.
- ✓ Statistical circuit simulation is getting realistic.

測定される回路レベルのばらつき

	ΔL	$\Delta N_{sub,n}$	$\Delta N_{sub,p}$	ΔT_{OX}
1	2 σ	2 σ	-2 σ	2 σ
2	2 σ	2 σ	-2 σ	-2 σ
3	2 σ	-2 σ	2 σ	2 σ
4	2 σ	-2 σ	2 σ	-2 σ
5	-2 σ	2 σ	-2 σ	2 σ
6	-2 σ	2 σ	-2 σ	-2 σ
7	-2 σ	-2 σ	2 σ	2 σ
8	-2 σ	-2 σ	2 σ	-2 σ

O. Prigge et al., IEICE, E82-C, p. 9107, 1999.

Inter-Chipばらつき

Wafer上のばらつき:In-Line測定からの抽出

Work in Progress - Do not publish

STRJ WS: March 8, 2007, 特別講演^{iv 37}

1/fノイズ特性

STRJ WS: March 8, 200⁷, 特別講演^{iv 38}

Comparison with Measurements

*N*_{trap} is fitted to measurements.
If technology is mature, *N*_{trap} is nearly universal.

I-V characteristics determine 1/f noise characteristics. 1/f noise is predictable.

S. Matsumoto et al., IEIEC T E, E88-C, p. 247, 2005.

Comparison with Measurements

>First γ Reduction and Increase in the Saturation Region >No Drastic Increase of γ

 $\succ \gamma$ Minimum Increase from 2/3

Origin of γ Increase **Potential Increase** Mobility Reduction

S. Hosokawa et al., Appl. Phys. Lett., p. 87, 2005.

Model Equation

$$S_{I_{d}}(f) = \frac{(L - \Delta L)}{L^{2}} \frac{I_{ds}^{2}}{W} \frac{N_{t}(E_{f})}{q \eta f} kT \left\{ \frac{1}{(N_{s} + N^{*})(N_{1} + N^{*})} + \frac{2\alpha\mu}{N_{1} - N_{s}} \log\left(\frac{N_{1} + N^{*}}{N_{s} + N^{*}}\right) + (\alpha\mu)^{2} \right\}$$
$$N^{*} = \frac{C_{ox} + C_{dep} + CIT}{q\beta}$$

Model Parameters

Trap Density: $N_{\text{trap}} = N_t (E_f) / \eta [eV^{-1}cm^{-3}][cm] = [eV^{-1}cm^{-2}]$ Scattering Coeff.: α [Vs] Capacitance Change: $C/T \simeq 0$

Origin of the Thermal Noise

van der Ziel Equation based on Nyquist Theorem:

$$S_{\rm id} = \frac{4kT}{L_{\rm eff}^2 I_{\rm ds}} \int g_{\rm ds}^2(y) dy \qquad \begin{array}{l} g_{\rm ds}(y): \text{ Channel Conductance} \\ g_{\rm ds0}: \quad \text{at } V_{\rm ds}=0 \\ = 4kTg_{\rm ds0}\gamma \qquad \qquad \gamma: \qquad \text{Noise Coefficient} \end{array}$$

Comparison with Measurements

No Additional Model Parameters

Hiroshima Univ 43

Noise Coefficient (γ **) of Short Channels**

Different Explanations

- Knoblinger et al. (2001): Hot Electron Contribution
- Jamal Deen et al. (2002): Channel Length Modulation
- Scholten et al. (2002): Velocity Saturation

Comparison with V_{th} Shift

Induced Gate Noise & Cross-Correlation Noise

Potential distribution along the channel is responsible. No Additional Model Parameters

T. Warabino et al., Proc. SISPAD, 2006.

Harmonic Distortion under High Frequency

Carrier transit delay dominates the HD characteristics.

D. Navarro et al., IEEE T ED, Sept., 2006.

1/fノイズ特性からのずれ

Intra-Chipばらつきの原因?

