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Increased Reliability ConcernsIncreased Reliability Concerns
An inevitable result of aggressive scaling
– No convenient solution from CMOS technology!

Chemical effects

Thermal effects

Mechanical effects

Temporal degradation (aging)

Thermal effects

Dynamic electronic signals

Static fluctuations

10-12s 10-8s 10-4s 100s 104s 108s

[M. Kole, BMAS 2007]
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Changing Scenario with Thin TChanging Scenario with Thin Toxox
Hot carrier effect

– NMOS in the saturation region
Bias temperature instability

– NBTI for PMOS in the inversion 
mode ( eaker PBTI in NMOS)– Close to the drain

– Related to the switching

mode (weaker PBTI in NMOS)
– Uniform in the channel
– Happens at the standby

G

GG

Hard oxide breakdown

S S

Soft oxide breakdownHard oxide breakdown
– Sudden Igate change, hard failure 
– Multiple oxide charges

Soft oxide breakdown
– Gradual increase of Igate

– More with interface traps
– A stochastic process
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– Correlated with other aging effects



Impact on Reliability AnalysisImpact on Reliability Analysis
Atom level: Discrete, intrinsically statistical

GG

S

Device level
– Compact models of temporal parameter shift
– Dependence on process variations

Circuit level
– Statistical interaction with dynamic operations
– In-situ characterization techniques
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[H. Reisinger, et al., IRPS 2010]



NBTI: Static StressNBTI: Static Stress
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Correlation with TDDB?Correlation with TDDB?

45nm

Hard 
BD

Soft BD

Direct tunneling dominates Igate in a thin Tox device
I t f h t l b th V hift d I hInterface charges control both Vth shift and Igate change
Modeling of such correlation reduces design margin
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[J. Hicks, et al., Intel, 2008; S. Tsujikawa, TED 2006]



Statistical Silicon ValidationStatistical Silicon Validation
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Decouple variations

(Vth, L, μ, etc.)

Extract the degradation 

(Vth from Ileakage, μ from Ilinear)
Reliability 

model 

Only 5-6 model parameters need to be extracted

( th, , μ, ) ( th leakage, μ linear)

Reliability model is scalable with primary process and 
design parameters
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Dependence on VDependence on Vthth VariationVariation
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Dependence on Dependence on TToxox VariationVariation
Aging is highly sensitive 
to To variation

( )0exp EEQV oxith ∝Δ

( ) to Tox variation
– Such an exponential 

dependence helps extract 
TVE ∝

( )thgsoxi VVCQ −∝
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– Again, aging effect is 
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Statistics of RO FrequencyStatistics of RO Frequency
100 ROs at 65nm
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Aging of RO Mean and STDAging of RO Mean and STD
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NBTI: Dynamic EffectNBTI: Dynamic Effect
A unique property of NBTI: 
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Aging under Dynamic OperationsAging under Dynamic Operations
Realistic circuit operations are statistical:
– Multiple Vdd, such as dynamic voltage scaling (DVS)dd

– Sleep mode (Vdd off): long recovery phase, no stress
– Random duty cycle at each node
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Gaps in Reliability TestGaps in Reliability Test
Traditional RO based structure 
is incapable to capture: Vdd1

V

Active Sleep 
(recovery)

– Dynamic operation conditions: 
duty cycle (fixed at 50% in a RO), 

lt d th i

Vdd2

ητ
τ: total operation periodvoltage, and their sequence

– Sensitivity to the rising/falling edge; Such unsymmetrical stress is 

τ: total operation period
η: the active portion 

y g g g ; y
important for today’s high performance synchronous design 
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A Generic Test PlatformA Generic Test Platform

O hi l k d lOn-chip clock and stress control: 
10% to 90% duty cycle,  680MHz – 1.23 GHz, 
control of stress VDD and temperature

On-chip
Clock &
Stress
Control

TDC

28
5 
μm

Data
Paths
Array

770 μm
M
U
X

Test array: 63 types of data paths 
Time-to-digital converter (TDC): 

DEC

2X10 Probe

Detect delay shift, with 2ps resolution
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Data Path ArrayData Path Array
Atom level: Test array 
contains one bypass path 
for the calibration and 63 
data paths
Three 45nm device types
– Core device
– Analog friendly device
– High-voltage device

Four circuit structures 
representing different 
sensitivities to NBTI 
Fan-out = 1
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Cyclic TDC DesignCyclic TDC Design

The Vernier ring structure

A simple and small cyclic structure for easy integration

Translates delay difference between two signals into digital output

The Vernier ring structure

Translates delay difference between two signals into digital output

Oversampling to average random jitter in test circuits
– 20 times to enhance the resolution to 2ps, corresponding to ~0.5% delay shiftp p g y
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Duty Cycle DependenceDuty Cycle Dependence

Higher duty cycle leads to longer stress time and more degradation

Under constant throughput the degradation is relatively independentUnder constant throughput, the degradation is relatively independent 
on dynamic sequence of duty cycle
– Aging is approximately linear to duty cycle, between 10-90%
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Dynamic Voltage ScalingDynamic Voltage Scaling
Aging is highly sensitive to voltage, 
and its dynamic sequence

Current reliability tools are only 
able to handle Case A (constant 

lt d d t l )voltage and duty cycle)
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Dynamic Aging ModelDynamic Aging Model
Cycle-to-cycle model: appropriate boundary 
conditions to connect different periods
Long-term model: direct calculation assuming 
averaged design parametersg g p
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[R. Zhen, et al., CICC 2009]



SummarySummary
Atom level: modeling of the increased variability
Device level: negative correlation with process variationsg
Circuit level: a generic test platform for statistical circuit 
reliability in dynamic operations
System level: hierarchical integration with VLSI design flow
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