Statistical Reliability Effects

Scaling Trend, Modeling, and Characterization

no Yu (Kevin) Cao

Nanoscale Integration and Modeling Group (NIMO), ASU

Increased Reliability Concerns

- An inevitable result of aggressive scaling
 - No convenient solution from CMOS technology!

Changing Scenario with Thin T_{ox}

- Hot carrier effect
 - NMOS in the saturation region
 - Close to the drain
 - Related to the switching

G O O O O S

- Hard oxide breakdown
 - Sudden I_{gate} change, hard failure
 - Multiple oxide charges
 - A stochastic process

- Bias temperature instability
 - NBTI for PMOS in the inversion mode (weaker PBTI in NMOS)
 - Uniform in the channel
 - Happens at the standby

- Soft oxide breakdown
 - Gradual increase of I_{gate}
 - More with interface traps
 - Correlated with other aging effects

Impact on Reliability Analysis

• Atom level: Discrete, intrinsically statistical

Device level

- Compact models of temporal parameter shift
- Dependence on process variations

Circuit level

- Statistical interaction with dynamic operations
- In-situ characterization techniques

[H. Reisinger, et al., IRPS 2010]

NBTI: Static Stress

- A mixture of trapping/detrapping and reaction/diffusion, affecting V_{th} and μ

Correlation with TDDB?

- Direct tunneling dominates I_{gate} in a thin T_{ox} device
- Interface charges control both V_{th} shift and I_{gate} change
- Modeling of such correlation reduces design margin

[J. Hicks, et al., Intel, 2008; S. Tsujikawa, TED 2006]

Statistical Silicon Validation

- Only 5-6 model parameters need to be extracted
- Reliability model is scalable with primary process and design parameters

Dependence on V_{th} Variation

	∆V _{th} (t=0) (%)	∆V _{th} (t=10⁵s) (%)
1	12.03	5.43
2	2.85	3.51
3	-6.75	8.02
4	-8.14	18.26

$$\Delta V_{th} \propto Q_i \exp(E_{ox}/E_0)$$

$$Q_i \propto C_{ox} \left(V_{gs} - V_{th} \right)$$

 $E_{ox} \propto V_{gs}/T_{ox}$

- Aging is a linear function of V_{th}
- It is negatively correlated with V_{th} shift, compensating initial process variations in V_{th}

Dependence on T_{ox} Variation

- Aging is highly sensitive to T_{ox} variation
 - Such an exponential dependence helps extract
 T_{ox} from the aging rate
 - Again, aging effect is
 negatively correlated
 with T_{ox} variation
- Aging effect could be exploited to reduce process variations
 - But the required annealing time is too long

Statistics of RO Frequency

100 ROs at 65nm

 $f_{i=0} \propto V_{dd} - V_{thi=0}$

$$\Delta f_i \propto -\Delta V_{thi}$$
 $\propto -(V_{dd} - V_{thi_0})$

$$f_{i} = f_{i_{0}} + \Delta f_{i}$$

$$\propto \left(1 - At^{n}\right) \cdot \left(V_{dd} - V_{thi_{0}}\right)$$

 RO speed variability is mainly due to V_{th} variations

Aging of RO Mean and STD

- The mean shift follows the power law of time, while σ decreases with the stress time (at the same rate)
- σ/μ stays the same under the stress!

NBTI: Dynamic Effect

- A unique property of NBTI: recoverable when V_{as}=0
- Consequently, the long-term degradation depends on duty cycle, i.e., the ratio of stress time in a clock cycle

Stress

$$\Delta V_{th} = \left[K_v \left(t - t_0 \right)^{0.5} + \sqrt[2n]{\Delta V_{th0}} \right]^{2n}$$
$$K_v \to Q_i \sqrt{\exp\left(-\frac{E_a}{kT}\right)} \left(\exp\left(\frac{E_{ox}}{E_0}\right) \right)^2$$

Recovery

$$\Delta V_{th} = \Delta V_{th0} \left(1 - \frac{2\xi_1 t_e + \sqrt{\xi_2 \cdot C \cdot (t - t_0)}}{2t_{ox} + \sqrt{C \cdot t}} \right)$$

Aging under Dynamic Operations

- Realistic circuit operations are statistical:
 - Multiple V_{dd}, such as dynamic voltage scaling (DVS)
 - Sleep mode (V_{dd} off): long recovery phase, no stress
 - Random duty cycle at each node

Gaps in Reliability Test

- Traditional RO based structure is incapable to capture:
 - Dynamic operation conditions: duty cycle (fixed at 50% in a RO), voltage, and their sequence

 Sensitivity to the rising/falling edge; Such unsymmetrical stress is important for today's high performance synchronous design

A Generic Test Platform

- On-chip clock and stress control: 10% to 90% duty cycle, 680MHz – 1.23 GHz, control of stress V_{DD} and temperature
- Test array: 63 types of data paths
- Time-to-digital converter (TDC):
 Detect delay shift, with 2ps resolution

Data Path Array

- Atom level: Test array contains one bypass path for the calibration and 63 data paths
- Three 45nm device types
 - Core device
 - Analog friendly device
 - High-voltage device
- Four circuit structures representing different sensitivities to NBTI
- Fan-out = 1

Cyclic TDC Design

The Vernier ring structure

- A simple and small cyclic structure for easy integration
- Translates delay difference between two signals into digital output
- Oversampling to average random jitter in test circuits
 - 20 times to enhance the resolution to 2ps, corresponding to ~0.5% delay shift

Duty Cycle Dependence

- Higher duty cycle leads to longer stress time and more degradation
- Under constant throughput, the degradation is relatively independent on dynamic sequence of duty cycle
 - Aging is approximately linear to duty cycle, between 10-90%

Dynamic Voltage Scaling

- Aging is highly sensitive to voltage, and its dynamic sequence
- Current reliability tools are only able to handle Case A (constant voltage and duty cycle)

Dynamic Aging Model

- Cycle-to-cycle model: appropriate boundary conditions to connect different periods
- Long-term model: direct calculation assuming averaged design parameters

Summary

- Atom level: modeling of the increased variability
- Device level: negative correlation with process variations
- Circuit level: a generic test platform for statistical circuit reliability in dynamic operations
- System level: hierarchical integration with VLSI design flow

Acknowledgements

- Graduate Students
 - Jyothi Velamala, Chi-Chao Wang, Yun Ye
 - Alumni: Min Chen, Wenping Wang, Wei Zhao
- Industrial Liaisons
 - Vijay Reddy, Srikanth Krishnan, Haldun Kufluoglu (TI)
 - Frank Liu, James H. Stathis (IBM)
 - Zhihong Liu (Cadence)
- Funding support: SRC, FCRP (MSD, C2S2), and NSF

