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16nm Bulk FinFETs for 16nm Node

Define fin
(spacer litho shown)

STI

Poly gate

Spacers

S/D epitaxy

HKMG

• 0.8 V Vdd

• 0.8 nm EOT

• 32 nm tall fins

• 8 nm wide fins

• Undoped channel

• In-situ doped S/D epi

• 33% Ge SiGe PMOS S/D

24nm fin pitch

56nm gate pitch

Simulation

domain
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S/D Shape Affects Stress, Rcont, and Cpar

CV/I Trade-Off

{111} facets

Gate 1

Gate 2

Drain

S

S

Adjacent 

S/D merge
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• Due to the LER wavelength l~30nm >> fin size:

• Use a small set of deterministic extreme cases instead of massive random analysis

• A popular claim that etching is a “low pass filter” requires significant amount of 

under-etching that can not be used for tight fin pitches

LER Analysis

S

D
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Fin shape
Edge #1 phase 

shift

Edge #2 phase 

shift
Comment

- - Perfect

0 p Fat

0 0 Bent

p/2 -p/2 Big source

-p/2 p Big drain

p 0 Thin

Extreme FinFET Shapes for LER Analysis

S D
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LWR: 3 Sigma = 3 nm

• 20% Ion range

• 30x Ioff range
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LWR: 3 Sigma = 6 nm

• 40% Ion range

• 1300x Ioff range
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LWR: 3 Sigma = 9 nm

• 80% Ion range

• 260,000x  Ioff range

• ~400 mV   Vtsat variation
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LER: Unacceptable State-of-the-Art Litho

• All LER cases line up along 

the same Ion/Ioff trade-off 

curve

• No performance gap with the 

perfect rectangular fin

• Variability dramatically 

increases with LER amplitude

• Unacceptable variability 

above 3nm 3*Sigma LER
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LER: Particular Configurations

Red color shows 

electrons
S D
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DL and DW Sensitivities: Quite High
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Delta L

Delta W

• 1nm change in L or W 

changes:
– Ion by ~10% and

– Ioff by ~4x

• No performance degradation, 

you move along the same 

Ion/Ioff trade-off curve

• Very similar DL and DW 

sensitivities, despite L~2W

• +/- 1nm L and W control is 

only possible with spacer litho

short

wide

long

narrow
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2n lines after n iterations of spacer lithography!

Photo-lithographically 

defined

sacrificial structures 1st Spacers 2nd Spacers 3rd Spacers

Spacer Lithography Definition
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Spacer Lithography: Small Impact

Perfect

3nm 3s LWR

6nm 3s LWR

9nm 3s LWR
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10%

2x



17

Spacer Lithography Imperfections

180o

<180o

Less deposition into

small visibility angle
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Spacer Lithography Imperfections

Less deposition into

small visibility angle

• Deposition creates positive feedback, amplifying LER

• This gives you two edges that are in-sync (same phase), but different amplitudes

• Etching has the opposite, negative feedback, smoothing LER

• It might be possible to balance the deposition and etching effects, but

• Generally, spacer-litho-defined features will have some width variation

Deposited layer (spacer)

Dummy feature (top view)
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• Different fins experience different etch/deposition conditions

• Due to local visibility angles and pattern density

• This leads to variability in fin width and layer thicknesses

Etch/Depo Micro-Loading Effects

NMOS PMOSPMOS
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g
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Imperfect Spacer Litho: Still OK

Perfect

Mid-thick

Drain-thick

Mid-thin
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Fixed fin width with 1, 2, & 3nm waves

3nm waves+1nm fin width distortions

12%

6x

Spacer litho is “green”: always reduces leakage!
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Random Dopant Fluctuations

As

source

As

drain

Indium channel-stop

Source  Spacer   Gate  Spacer  Drain
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• Smooth junctions give similar 
performance for different 
amounts of abruptness

• The amount of RDF variability 
is quite moderate

• With junction abruptness 
degrading from 1nm/dec to 
3nm/dec, sVt only doubles

• Surprisingly low RDF 
sensitivity to junction 
abruptness

• Indium channel-stop RDF 
contribution is negligible

RDF: Insensitive to Junction Abruptness
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S/D RDF: Consistent with DL Variation
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Top view of the fin:

As As

Indium below

11.2nm

12.6nm

• Apparent channel length dif-

ference is ~1.4nm

• S/D RDF are consistent with the 

DL sensitivity of 4x Ioff per 1nm
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Single Dopant in the Channel: ~3e17 cm-3

• Donor “opens” the channel for 

Ioff (3x), but not Ion (3%)

• Acceptor “blocks” the channel

• The impact is not catastrophic
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Single Dopant: Worst at Mid-Height

• Ions in the middle of the fin 

height affect Ioff the most

• Ions at the top of the fin affect 

Ion the most

• Ions at the bottom of the fin 

have the least impact

Acceptors
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Single Dopant: Worst at Mid-Length

• Ions in the middle of the fin 

length have the most impact

• Ions at the source side have 

less impact

• Ions at the drain side have the 

least impact
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• Stress and mobility 

values are averaged 

over the entire fin 

channel volume

• Both the stress and the 

mobility increase upon 

poly removal

• Mobility enhancement 

degrades with fin 

curvature

• This adds (i.e. positive 

feedback) to the longer 

L with fin curvature

Stress Variation for Spacer Litho
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• Before poly gate removal 
for the gate-last HKMG, 
stress levels are very 
similar

• However, after the poly 
removal, stress increases, 
but the amount is 
geometry-specific

• All non-rectangular 
shapes reduce mobility 
despite using the best 
patterning option: spacer 
lithography

• Gate-first HKMG has 
remarkably lower stress 
but remarkably lower 
stress variation

Stress Variation for Distorted Spacer Litho
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• -1 GPa

• -5 GPa

• Zero stress

• Huge stress 

variations, 

especially at the 

S/D junctions

• To get average fin 

stress of ~2 GPa, 

peak stress in the 

fin exceeds 

dangerous 5 GPa

Non-Uniform Fin Stress Patterns
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• High shear stress of ~1 GPa

• This is different from planar FETs

• Can affect mobility enhancement

• Can affect defect formation

High Shear Stress Levels
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• Remarkably little stress loss 
even for major misalignment 
for gate-last HKMG

• Stronger effect for gate-first 
HKMG

• Again, perfect case performs 
the best

• Contact resistance will 
degrade much faster

DPT Mask Misalignment Impact on Stress
Misalignment =
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• Remarkably little stress loss 
even for major misalignment 
for gate-last HKMG

• Stronger effect for gate-first 
HKMG

• Again, perfect case performs 
the best

• Contact resistance will 
degrade much faster

DPT Mask Misalignment Impact on Stress
Misalignment =

0nm 6nm 12nm Mask #1 Mask #2
Fins
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– State-of-the-art litho is not good enough for fin and gate patterning

– Spacer lithography provides manageable amount of variations

– Geometry variation of +/- 1nm dominates variability over RDF & s

– S/D junction abruptness is not critical for performance & variability

– Single stray donor/acceptor dopant does not disturb performance 
significantly

– Remarkable stress gradients, from 5 GPa to 0 across the fin

– High shear stress levels, ~1 GPa

Conclusions


