

Modeling Random Variability of 16nm Bulk FinFETs

Victor Moroz, Qiang Lu, and Munkang Choi

September 9, 2010

SISPAD 2010 Variability Workshop

Outline

- LER effects for litho and spacer litho
- Random dopant fluctuations
- Stress engineering
- Conclusions

Outline

LER effects for litho and spacer litho

- Random dopant fluctuations
- Stress engineering
- · Conclusions

16nm Bulk FinFETs for 16nm Node

SYNOPSYS® Predictable Success

S/D Shape Affects Stress, R_{cont}, and C_{par}

SYNOPSYS[®] Predictable Success

LER Analysis

CF4 BARC open

Stripping and HF

Gate etching

L ~ λ $L > \lambda$ $L < \lambda$: few requires extreme averages random LER; no cases sampling issues

>=65nm

45nm - 22nm

<=16nm

• Due to the LER wavelength λ ~30nm >> fin size:

9.2

9

. . .

8.1

• Use a small set of deterministic extreme cases instead of massive random analysis

-4

-5.1

-4.1

. . .

9.1

 A popular claim that etching is a "low pass filter" requires significant amount of under-etching that can not be used for tight fin pitches

is ~9nm:

Extreme FinFET Shapes for LER Analysis

Fin shape	Edge #1 phase shift	Edge #2 phase shift	Comment
SD	-	-	Perfect
	0	π	Fat
	0	0	Bent
	π/2	- π/2	Big source
	- π/2	π	Big drain
	π	0	Thin

Perfect Rectangular 16nm FinFET

LWR: 3 Sigma = 3 nm

- 20% I_{on} range
- 30x I_{off} range

LWR: 3 Sigma = 6 nm

- 40% I_{on} range
- 1300x I_{off} range

LWR: 3 Sigma = 9 nm

- 80% I_{on} range
- 260,000x I_{off} range
- ~400 mV V_{tsat} variation

LER: Unacceptable State-of-the-Art Litho

- All LER cases line up along the same lon/loff trade-off curve
- No performance gap with the perfect rectangular fin
- Variability dramatically increases with LER amplitude
- Unacceptable variability above 3nm 3*Sigma LER

LER: Particular Configurations

ΔL and ΔW Sensitivities: Quite High

- 1nm change in L or W changes:
 - Ion by ~10% and
 - loff by ~4x
- No performance degradation, you move along the same lon/loff trade-off curve
- Very similar ∆L and ∆W sensitivities, despite L~2W
- +/- 1nm L and W control is only possible with spacer litho

Spacer Lithography Definition

2ⁿ lines after n iterations of spacer lithography!

Spacer Lithography: Small Impact

• For the spacer lithography, the two fin edges are always in-sync

Spacer Lithography Imperfections

Spacer Lithography Imperfections

- Deposition creates positive feedback, amplifying LER
- This gives you two edges that are in-sync (same phase), but different amplitudes
- Etching has the opposite, negative feedback, smoothing LER
- It might be possible to balance the deposition and etching effects, but
- Generally, spacer-litho-defined features will have some width variation

Etch/Depo Micro-Loading Effects

- Different fins experience different etch/deposition conditions
- Due to local visibility angles and pattern density
- This leads to variability in fin width and layer thicknesses

Imperfect Spacer Litho: Still OK

• For the spacer lithography, the two fin edges are always in-sync

Spacer litho is "green": always reduces leakage!

Outline

LER effects for litho and spacer litho

Random dopant fluctuations

- Stress engineering
- · Conclusions

Random Dopant Fluctuations

Different junction abruptness

X [um]

Source Spacer Gate Spacer Drain

10¹⁶

10¹⁵

RDF: Insensitive to Junction Abruptness

- Smooth junctions give similar performance for different amounts of abruptness
- The amount of RDF variability is quite moderate
- With junction abruptness degrading from 1nm/dec to 3nm/dec, σ_{Vt} only doubles
- Surprisingly low RDF sensitivity to junction abruptness
- Indium channel-stop RDF contribution is negligible

S/D RDF: Consistent with ΔL Variation

SYNOPSYS® Predictable Success

Single Dopant in the Channel: ~3e17 cm⁻³

- Donor "opens" the channel for I_{off} (3x), but not I_{on} (3%)
- Acceptor "blocks" the channel
- The impact is not catastrophic

Single Dopant: Worst at Mid-Height

Single Dopant: Worst at Mid-Length

- lons in the middle of the fin length have the most impact
- lons at the source side have less impact
- Ions at the drain side have the least impact

Outline

- LER effects for litho and spacer litho
- Random dopant fluctuations
- Stress engineering
- · Conclusions

Stress Variation for Spacer Litho

- Stress and mobility values are averaged over the entire fin channel volume
- Both the stress and the mobility increase upon poly removal
- Mobility enhancement degrades with fin curvature
- This adds (i.e. positive feedback) to the longer L with fin curvature

Stress Variation for Distorted Spacer Litho

- Before poly gate removal for the gate-last HKMG, stress levels are very similar
- However, after the poly removal, stress increases, but the amount is geometry-specific
- All non-rectangular shapes reduce mobility despite using the best patterning option: spacer lithography
- Gate-first HKMG has remarkably lower stress but remarkably lower stress variation

Non-Uniform Fin Stress Patterns

© Synopsys 2010

SYNOPS SS Predictable Success

High Shear Stress Levels

- - High shear stress of ~1 GPa
 - This is different from planar FETs
 - Can affect mobility enhancement
 - Can affect defect formation

DPT Mask Misalignment Impact on Stress

- Remarkably little stress loss even for major misalignment for gate-last HKMG
- Stronger effect for gate-first
 HKMG
- Again, perfect case performs the best
- Contact resistance will degrade much faster

DPT Mask Misalignment Impact on Stress

- Remarkably little stress loss even for major misalignment for gate-last HKMG
- Stronger effect for gate-first
 HKMG
- Again, perfect case performs
 the best
- Contact resistance will degrade much faster

Outline

- LER effects for litho and spacer litho
- Random dopant fluctuations
- Stress engineering
- Conclusions

Conclusions

- FinFET variability mechanisms are analyzed for 16nm node
- LER effects analyzed as a set of extreme cases:
 - State-of-the-art litho is not good enough for fin and gate patterning
 - Spacer lithography provides manageable amount of variations
 - Geometry variation of +/- 1nm dominates variability over RDF & σ
- Random dopant fluctuations are suppressed due to undoped channel and full depletion
 - S/D junction abruptness is not critical for performance & variability
 - Single stray donor/acceptor dopant does not disturb performance significantly
- Stress engineering is very efficient in FinFETs, but brings several new issues
 - Remarkable stress gradients, from 5 GPa to 0 across the fin
 - High shear stress levels, ~1 GPa
- 3D simulation methodology demonstrated for several major FinFET variability mechanisms
- Metal grains for gate-last HKMG are too small to matter

